
Some Performance Analysis Issues

Adolfy Hoisie, Darren Kerbyson, Scott Pakin,
Fabrizio Petrini, and Harvey Wasserman

hjw@lanl.gov

Computer & Computational Sciences Division
(CCS)

(Some Data from Mike Gittings, CRESTONE Team)
LAUR 03-0529

Modeling, Informatics, and Algorithms Group (CCS-3)

http://www.c3.lanl.gov/par_arch

January, 2003

January 29, 2003

2

• We were asked to comment on observed
performance.

• Tactical goal is to examine efficiency and give an
explanation.

• Strategic goal is to understand how applications
match to architectures.

• Result: A view on the right questions to ask

Overview

January 29, 2003

3

• Separate single-processor and multi-processor issues.
 Trun = Tcomputation + Tcommunication (- Toverlap)
 Trun = f (T1-CPU , Scalability function)

– Single-processor performance issues addressed via
measurements, especially hardware counters.

– Multi-processor performance issues addressed via modeling.

Approach

• Not predictive but diagnostic

–
• Predictive but empirical.

• Assumptions:
– Workload characterization (code module, etc.)
– Focused on “compute-bound” portions (exclude OS, I/O)

January 29, 2003

4

• Workload not representative
– Profiling and creation of stand-alone representative

benchmarks are vital.
– “Benchmarking is the process by which we determine

performance on a workload of interest.”
• Be careful generalizing results from one workload to another.

• Quoting single-processor performance figures from
multi-processor measurements.

Pitfalls

January 29, 2003

5

• Observed Rate = f * Peak_Rate

Single-Processor Performance

 f ≡ 0.333333 sPPM* Only
(1500 3000 FLOPS per gridpoint)

* 3-D gas dynamics via simplified Piecewise Parabolic Method

• f = ~0.1 ± .05 Everything else
(≤ 50 FLOPS per gridpoint)

• Why?

January 29, 2003

6

Basic Single-CPU Performance Issues

• Instruction parallelism
– Affected by CPU architecture, compiler, code

• Architecture: Superscalar, pipelined processors - out of our control
• Compiler: little improvement in ~10 years, out of our control
• Code: significant limits to restructuring / optimization for real codes

• Memory speed
– Affected by caches, technology, code

• Caches: getting bigger, closer, but not enough for real codes
• Technology: gap between CPU & memory speed is inevitable and

constantly increasing (at alarming rates)
• Code: significant limits to restructuring / optimization for real codes

January 29, 2003

7

CPU Time = Ninst * CPI * Clock Period

ApplicationApplication

Compiler

CPU Time =
Instructions

 Program

 Cycles

Instruction

 Seconds

 Cycle

XX

Instruction Set

Architecture

Technology

“Fundamental Equation” of Serial Performance

January 29, 2003

8

Pitfalls

• Peak performance as an indicator of true performance.
- (despite the fact that Q = ~4-5 X BM)

• Clock speed as an indicator of true performance.

• Indirect measures of performance as indicators of true
performance (MIPS, MFLOPS, CPI, percentage of peak,
cache hit ratio)

• Linpack as a measure of true performance.

January 29, 2003

9

CPU Time = Ninst * CPI * Clock Period

Performance Analysis with Cycle Accounting

= Ninst * S CPIi * Clock Period

Important Example:

CPU Time = Ninst * {CPICompute + CPImemory} * Clock Period

• Useful diagnostic method: understand
where the cycles are spent
during execution

CPIstall

January 29, 2003

10

ASCI Processors are Superscalar, Pipelined
• Superscalar: issue/execute >1 operation per clock

period (CP) in separate functional units
– Example: sgi MIPS R10000 (ASCI BlueMountain):

• 1 integer,
• 1 memory,
• 1 Floating-Point multiply/add, and
• 1 branch/conditional per CP.

Pipelined

Not pipelined
Int FP BrMem

Superscalar and Pipelined

Mem1
Int1

FP1
Br1

Mem2
Int2

FP2
Br2

Int3
Mem3
FP3
Br3

Time (CP)

January 29, 2003

11

Do the Codes Contain Optimal Instruction Mix?
• Answer: NO
• Examples:

– Observed for PARTISN on ASCI BlueMountain:
• ~ 3 memory references per FLOP
• One memory reference every 2.4 instructions

– Observed for SAGE on ASCI BlueMountain
• 3 memory references per FLOP
• One memory reference every 3 instructions

January 29, 2003

12

Comparison with other “Benchmarks”

• Compare to Linpack: O(n3) FLOPS for O(n2) mem. ref’s
• Compare to sPPM: 3.4 FLOPS for 1 mem. ref.

• Again, SAGE, Partisn: 1 FLOP for 3 mem. ref’s.

• Conclusion: Code sequences not well matched to MIPS
R10K, mostly due to memory ops

• Conclusion: “Benchmarks” not representative

January 29, 2003

13

Performance of BlueMtn. Using Ideal CPI

• CPU Time = Ninst * {CPIcompute + CPIstall} * Clock Period

• 4 instructions per clock period, therefore optimal
CPI = 0.25 (smaller is better)

• Observed: This is CPIcompute, an
estimate of CPI that
eliminates memory latency
effects.

We see that CPIcompute is
still quite large compared
with the ideal value.

CPIcompute

SWEEP 0.88

HYDRO 0.89

HYDRO-T 0.90

NEUT 0.77

January 29, 2003

14

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rfo

rm
an

ce “Moore’s Law”

From D. Patterson, CS252, Spring 1998 ©UCB

Processor-DRAM Gap
(latency)

Where Else Does the Performance Go?

January 29, 2003

15

• Memory performance is the key.
• Two important memory performance characteristics:

– Latency: (Scalar) time between a processor’s request for a
datum and its delivery (from somewhere)

– Bandwidth:

– Which is more important? Depends on the code’s locality.

Where Else Does the Performance Go?

January 29, 2003

16

Performance of BlueMtn. Using Full CPI

CPIcompute Total
CPI

SWEEP 0.88 1.6

HYDRO 0.89 1.3

HYDRO-T 0.90 0.95

NEUT 0.77 0.8

This table shows full,
measured
CPI.

We see that in some
cases, memory stall
time comprises about
1/2 of CPI.

• CPU Time = Ninst * {CPIcompute + CPIstall} * Clock Period

• Observed:

January 29, 2003

17

How Efficient are ASCI Processors?
• Examples:

– Observed for PARTISN on ASCI BlueMountain:
• 4191298240 FLOPS in 63.6 seconds = 65.9 MFLOPS (13% of

peak)

– Observed for SAGE on ASCI BlueMountain
• 8679758816 FLOPS in 411.3459528 = 21 MFLOPS (4% of peak)

• Compare to Linpack (~70-80% efficiency)? Really, the
comparison is meaningless.

• Efficiences are low due to (low) memory speed and
large numbers of memory operations. Large numbers
of memory ops are inherent in codes with
unstructured grids.

January 29, 2003

18

Independant Data: SAGE Solver Rates

165 (8.2%)117 (5.9%)50 (10%)27.5
MFLOPS
(5.5% of

peak)

1-CPU

Q
(New)

Q
(Old)

BlueMtn.
(New)*

BlueMtn.
(Old)

• New: Code tuned by Rice U. to eliminate some gather/scatter ops.
See John Mellor-Crummey and John Garvin. Optimizing Sparse Matrix Vector
Multiply using Unroll-and-jam Proceedings of the Los Alamos Computer Science
Institute Third Annual Symposium October, 2002, Santa Fe, NM. Published on CD-
ROM.
• NB: Solver consumes ~40-60% of a SAGE run typically.

January 29, 2003

19

Instruction Mix From Other Workloads
• SPECfp2000 Benchmark Suite, average instruction

mix over 5 programs:
– Memory: 39%
– FP: 18%
– Integer: 26%
– Other: 17%

• CPI for transaction-processing benchmark on a Q-like
machine: 2.23 (optimal is 0.25)

• Conclusion: Superscalar architectures execute at low
efficiencies on ASCI, on other scientific workloads,
and on commercial workloads; problem is memory
speed universally

Hennessy & Patterson,
“Computer Architecture,” 3rd Edition.

January 29, 2003

20

It2: 0.63 = 0.23 + 0.40
optimal = 0.16

CPICompute ~ 1.4X optimal
CPIstall ~ 63% of CPI (85% of which is memory)

Sweep3D: Initial Results From Itanium-2

CPI = CPICompute + CPIstall

BM: 1.6 = 0.88 + 0.72
 optimal = 0.25

CPIcompute ~ 3.5X optimal
CPIstall ~ 45% of CPI

January 29, 2003

21

Does “Percent of Peak” Really Matter?

• SAGE (timing_b) on BM
– (250 MHz, 500 MFLOPS Peak per CPU, 2 FLOPS per CP):
– Time = 522 sec.
– MFLOPS = 26.1 (5.2% of peak)

• SAGE (timing_b) on Itanium-2
– (900 MHz, 3600 MFLOPS Peak per CPU, 4 FLOPS per CP):
– Time = 91.1 sec
– MFLOPS = 113.0 (3.1% of peak)

January 29, 2003

22

Final Thoughts (1 of 2)

• Peak rate and clock rate say extremely little about
actual performance.

• Per-processor efficiency is only an indirect measure of
performance; we are only interested in TIME

• Be careful which benchmarks you use/regard.

January 29, 2003

23

• 10 years of high-performance microprocessors:
– Some improvement in compiler ability to transform complicated

code sequences to enable instruction-level parallelism; little/no
improvement for cache blocking

– Data caches are growing but so are problem sizes
• E.g., more levels of adaption desirable

– ≤ ~10% of peak performance is the norm for a wide range of
real codes

– Expect this to continue in subsequent generations (IA-64, K8,
etc.)

– Code optimization could improve cache/processor utilization but
algorithms constrain ultimate efficiency (sPPM vs. .e.g., SAGE)

Final Thoughts (2 of 2)

January 29, 2003

24

ABSTRACT

• This talk features a discussion of performance-related
issues for ASCI LANL codes. A two-part approach is
used, separating the single- and multiple-processor
issues, and the bulk of this talk concerns single-
processor performance. Hardware counters are used to
account for where the time is spent and both
instruction level parallelism and memory-related stall
time is quantified. The talk also contains ideas related
to common pitfalls in measuring and reporting single-
processor performance.

